1,797 research outputs found

    Site-centered impurities in quantum spin chains

    Full text link
    The magnetic behavior of antiferromagnetic spin 1/2 chains with site-centered impurities in a magnetic field is investigated. The effect of impurities is implemented by considering different situations of both diagonal and off-diagonal disorder. The resulting magnetization curves present a wide variety of plateaux, whose position strongly depends on the kind of disorder considered. The relevance of these results to experimental situations is also discussed.Comment: 6 pages, 6 figure

    Current and noise correlations in a double dot Cooper pair beam splitter

    Full text link
    We consider a double quantum dot coupled to two normal leads and one superconducting lead, modeling the Cooper pair beam splitter studied in two recent experiments. Starting from a microscopic Hamiltonian we derive a general expression for the branching current and the noise crossed correlations in terms of single and two-particle Green's function of the dot electrons. We then study numerically how these quantities depend on the energy configuration of the dots and the presence of direct tunneling between them, isolating the various processes which come into play. In absence of direct tunneling, the antisymmetric case (the two levels have opposite energies with respect to the superconducting chemical potential) optimizes the Crossed Andreev Reflection (CAR) process while the symmetric case (the two levels have the same energies) favors the Elastic Cotunneling (EC) process. Switching on the direct tunneling tends to suppress the CAR process, leading to negative noise crossed correlations over the whole voltage range for large enough direct tunneling

    Real-time simulation of finite frequency noise from a single electron emitter

    Full text link
    We study the real-time emission of single electrons from a quantum dot coupled to a one dimensional conductor, using exact diagonalization on a discrete tight-binding chain. We show that from the calculation of the time-evolution of the one electron states, we have a simple access to all the relevant physical quantities in the system. In particular, we are able to compute accurately the finite frequency current autocorrelation noise. The method which we use is general and versatile, allowing to study the impact of many different parameters like the dot transparency or level position. Our results can be directly compared with existing experiments, and can also serve as a basis for future calculations including electronic interactions using the time dependent density-matrix renormalisation group and other techniques based on tight-binding models.Comment: 10 page

    Current correlations in the interacting Cooper-pair beam-splitter

    Full text link
    We propose an approach allowing the computation of currents and their correlations in interacting multiterminal mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism relies on the expression of branching currents and noise crossed correlations in terms of one- and two-particle Green's functions for the dots electrons, which are then evaluated self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter et al. Nature (London) 461 960 (2009); Phys. Rev. Lett. 107 136801 (2011); L. G. Herrmann et al. Phys. Rev. Lett. 104 026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where the dots have opposite energies with respect to the superconducting chemical potential)

    Hanbury Brown and Twiss noise correlations in a topological superconductor beam splitter

    Full text link
    We study Hanbury-Brown and Twiss current cross-correlations in a three-terminal junction where a central topological superconductor (TS) nanowire, bearing Majorana bound states at its ends, is connected to two normal leads. Relying on a non-perturbative Green function formalism, our calculations allow us to provide analytical expressions for the currents and their correlations at subgap voltages, while also giving exact numerical results valid for arbitrary external bias. We show that when the normal leads are biased at voltages V1V_1 and V2V_2 smaller than the gap, the sign of the current cross-correlations is given by -\mbox{sgn}(V_1 \, V_2). In particular, this leads to positive cross-correlations for opposite voltages, a behavior in stark contrast with the one of a standard superconductor, which provides a direct evidence of the presence of the Majorana zero-mode at the edge of the TS. We further extend our results, varying the length of the TS (leading to an overlap of the Majorana bound states) as well as its chemical potential (driving it away from half-filling), generalizing the boundary TS Green function to those cases. In the case of opposite bias voltages, \mbox{sgn}(V_1 \, V_2)=-1, driving the TS wire through the topological transition leads to a sign change of the current cross-correlations, providing yet another signature of the physics of the Majorana bound state.Comment: 14 pages, 8 figure

    Electronic Hong-Ou-Mandel interferometry in two-dimensional topological insulators

    Full text link
    The edge states of a two-dimensional topological insulator are characterized by their helicity, a very remarkable property which is related to the time-reversal symmetry and the topology of the underlying system. We theoretically investigate a Hong-Ou-Mandel like setup as a tool to probe it. Collisions of two electrons with the same spin show a Pauli dip, analogous to the one obtained in the integer quantum Hall case. Moreover, the collisions between electrons of opposite spin also lead to a dip, known as Z2\mathbb{Z}_{2} dip, which is a direct consequence of the constraints imposed by time-reversal symmetry. In contrast to the integer quantum Hall case, the visibility of these dips is reduced by the presence of the additional edge channels, and crucially depends on the properties of the quantum point contact. As a unique feature of this system, we show the possibility of three-electron interference, which leads to a total suppression of the noise independently of the point contact configuration. This is assured by the peculiar interplay between Fermi statistics and topology. This work intends to extend the domain of applicability of electron quantum optics.Comment: 12 pages, 7 figure

    Cooper pair splitting in a nanoSQUID geometry at high transparency

    Full text link
    We describe a Josephson device composed of two superconductors separated by two interacting quantum dots in parallel, as a probe for Cooper pair splitting. In addition to sequential tunneling of electrons through each dot, an additional transport channel exists in this system: crossed Andreev reflection, where a Cooper pair from the source is split between the two dots and recombined in the drain superconductor. Unlike non-equilibrium scenarios for Cooper pair splitting which involves superconducting/normal metal "forks", our proposal relies on an Aharonov-Bohm measurement of the DC Josephson current when a flux is inserted between the two dots. We provide a path integral approach to treat arbitrary transparencies, and we explore all contributions for the individual phases (00 or π\pi) of the quantum dots. We propose a definition of the Cooper pair splitting efficiency for arbitrary transparencies, which allows us to find the phase associations which favor the crossed Andreev process. Possible applications to experiments using nanowires as quantum dots are discussed.Comment: 12 pages, 13 figure

    Determinants Of Adaptive Immunity In Cancer

    Get PDF
    Immune checkpoint blockade results in T cell antitumor responses but most patients fail to respond. This raises fundamental questions about mechanisms of tumor immune recognition and resistance. Here, I first report tumor regressions in a subset of patients with metastatic melanoma treated with anti-CTLA4 antibody and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common due to upregulation of PD-L1 on tumor cells and corresponding T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types required RT, anti-CTLA4, and anti-PD-L1/PD1. When I investigated determinants of improved responses to combination therapy, I found that RT enhanced the antigenic diversity of intratumoral T cells, anti-CTLA4 predominantly inhibited regulatory T cells, and anti-PD-L1 reversed T cell exhaustion. I next extended my investigation of this combination therapy to pancreatic ductal adenocarcinoma (PDA), finding that optimal responses required addition of agonist CD40 monoclonal antibody

    Chaining of welding and finish turning simulations for austenitic stainless steel components

    Get PDF
    The chaining of manufacturing processes is a major issue for industrials who want to understand and control the quality of their products in order to ensure their in-service integrity (surface integrity, residual stresses, microstructure, metallurgical changes, distortions,…). Historically, welding and machining are among the most studied processes and dedicated approaches of simulation have been developed to provide reliable and relevant results in an industrial context with safety requirements. As the simulation of these two processes seems to be at an operationnal level, the virtual chaining of both must now be applied with a lifetime prediction prospect. This paper will first present a robust method to simulate multipass welding processes that has been validated through an international round robin. Then the dedicated “hybrid method”, specifically set up to simulate finish turning, will be subsequently applied to the welding simulation so as to reproduce the final state of the pipe manufacturing and its interaction with previous operations. Final residual stress fields will be presented and compared to intermediary results obtained after welding. The influence of each step on the final results will be highlighted regarding surface integrity and finally ongoing validation works and numerical modeling enhancements will be discussed
    corecore